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Version History

This release of WAVEMAKER software incorporates a recent technical development achieved
at the Reliability of Marine Structures Program: the ability to successfully predict
wave histories at other locations based on the underlying first-order wave components
for a given target observed wave history. WAVEMAKER 3.0 is not fully backward com-
patible, that is, results from a run of earlier versions of WAVEMAKER can not be exactly
obtained with this new release because there have been some minor improvements
to existing parts of the program. The input files to earlier versions can, however, be
directly used in this new version. A version history of WAVEMAKER follows:

e Version 1.0: Released in April 1995 and documented in Jha and Winter-
stein, 1995, Report RMS-17, contains simulation capabilities for second-
order random waves.

e Version 1.1: Released in August 1995, includes modification of tempo-
rary intermediate output file to use less disk space and to reduce program
execution time by approximately 50%. Additionally, a DOS executable of
WAVEMAKER was included in this release.

e Version 2.0: Released June 1996, includes identification capabilities so
that underlying first-order wave history can be retrieved from an observed

" wave history, Report RMS-22

e Version 3.0: Released June 1998, includes prediction capabilities so that
wave histories at other spatial locations can be predicted from a user-
specified wave history at a known location. Also, endpoint discontinuities
in the wave records are treated prior to application of FFT’s.
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Abstract

WAVEMAKER is a FORTRAN subroutine to simulate random non-Gaussian
ocean wave histories. It generates a first-order (Gaussian) wave process
with an arbitrary power spectrum, and applies nonlinear corrections based
on second-order hydrodynamics. Inputs to the routine include the first-
order spectrum, the water depth, and a set of locations in the along-wave
direction at which wave elevation histories are desired. It may thus provide
useful input to estimate loads on spatially distributed ocean structures and
ships.

The WAVEMAKER package also includes a separate driver program, which
facilitates input/output and generates several analytical spectral models.
Its input is specified in command-line format, similar to that of the TF-
POP program for hydrodynamic post-processing also developed in the
Stanford RMS program. An example problem is included to demonstrate
the use of WAVEMAKER and its driver.

In terms of methodology, WAVEMAKER first uses standard frequency do-
main methods to generate first-order Gaussian histories at each location.
For each of these, WAVEMAKER then evaluates the full set of second-order
corrections according to hydrodynamic theory. Thus the first-order wave
process, with N components at frequencies wn, gives rise to a total of N2
corrections, spread over all sum frequencies wy, + wm, and to another N2
corrections over all difference frequencies w, — wWmn. '

WAVEMAKER also includes the ability to identify the underlying first-
order Gaussian history from a given observed time history. This feature
is particularly attractive for use in situations where the second-order non-
linearity in the waves is built-in into the structural response calculations.
To avoid double-counting therefore, the input waves should be filtered to
remove any second-order nonlinearity. WAVEMAKER takes in an input wave
history and identifies its first- and second-order wave components. This
identification, an inverse feature to simulation, is based on a Newton-
Raphson scheme to solve N simultaneous nonlinear equations to identify
the first-order waves which, when run through the second-order wave pre-
dictor, matches the observed waves.

Wavemaker’s final capability is to use the identified underlying first-
order Gaussian wave history to predict consistent first- and second-order
wave histories at alternative user-specified spacial locations.




Chapter 1

Introduction to WAVEMAKER 3.0

This release of WAVEMAKER software incorporates a recent technical development achieved

at the Reliability of Marine Structures Program: the ability to successfully predict
wave histories at other locations based on the underlying first-order wave components
for a given target observed wave history. WAVEMAKER 3.0 is not fully backward com-
patible, that is, results from a run of earlier versions of WAVEMAKER can not be exactly
obtained with this new release because there have been some minor improvements
to existing parts of the program. The input files to earlier versions can, however, be
directly used in this new version. A version history of WAVEMAKER follows:

e Version 1.0: Released in April 1995 and documented in Jha and Winter-
stein, 1995, Report RMS-17, contains simulation capabilities for second-
order random waves.

e Version 1.1: Released in August 1995, includes modification of tempo-
rary intermediate output file to use less disk space and to reduce program
execution time by approximately 50%. Additionally, a DOS executable of
WAVEMAKER was included in this release.

e Version 2.0: Released June 1996, includes identification capabilities so
that underlying first-order wave history can be retrieved from an observed
wave history, Report RMS-22

e Version 3.0: Released June 1998, includes prediction capabilities so that
wave histories at other spatial locations can be predicted from a user-
specified wave history at a known location. Also, endpoint discontinuities
in the wave records are treated prior to application of FFT’s.

In this report, Chapter 2 includes documentation of the simulation capabilities
and is largely taken from Report RMS-17. Chapter 3 documents the identification
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analysis capabilities, and is largely taken from Report RMS—-22. Chapter 4 docu-
ments the newly developed prediction capabilities of Wavemaker. The appendices
include sample input and output files for the simulation, identification and prediction

examples.




Chapter 2

Simulation of Second-Order Random
Waves

2.1 Introduction

It is common in many ocean engineering problems to seek to simulate a time trace
of the wave elevation process, 7(t), at one or more locations in the along-wave direc-
tion. It is most typical to use a Gaussian model of 7(t) for this simulation, which is
consistent with linear wave theory. This is due primarily to the ease of simulating
Gaussian processes, e.g. with FFT (Fast Fourier Transform) methods for an arbitrary
wave spectrum (e.g., Borgman, 1969).

We seek here to demonstrate and facilitate a similar frequency-domain simulation
capability for nonlinear random waves at a set of spatial locations (e.g., Figure 2.1).
These simulations split the wave elevation into a random first-order (linear) wave his-
tory, m1(t), and a corresponding nonlinear history 72(t) which includes second-order
corrections. FFT techniques are used to generate 7; (t) with an arbitrary (first-order)
wave spectrum, S, (w). Physical principles are used to generate 7,(t) from (%),
based on second-order perturbation analysis of the underlying nonlinear hydrody-
namic problem. Thus if the first-order wave process has N. components, at frequen-
cies wy, Mo(t) includes N? second-order corrections, spread over all sum frequencies
wn + Wy, and another N2 corrections over all difference frequencies wy, — wpn,.

_ Note that these second-order wave models are not novel; they date back at least
to the early 1960s (e.g., Longuet-Higgins, 1963). More novel, however, is their recent
confirmation with respect to various statistics of field measurements (Marthinsen
and Winterstein, 1992; Vinje and Haver, 1994) and wave tank studies of still more

3
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Figure 2.1: Simulated wave time histories at specified spatial locations

severe seas (Winterstein and Jha, 1995). Such second-order wave models also form
the basis of state-of-the-art nonlinear diffraction analysis of floating structures (e-g.,
SWIM, 1995; WAMIT, 1995). Note also that the model of 7,(t) used here varies
explicitly with water depth, as predicted by second-order theory, to reflect increasing
nonlinearity as we proceed to shallower water depths. -

2.2 Methodology

2.2.1 Underlying Theory and Assumptions

We first consider 7 (t), the first-order wave elevation, at a specific reference location
(say z=0). For either frequency-domain analysis or time-domain simulation, it is
convenient to write 7;(t) as a discrete Fourier sum over positive frequencies wy:

N N
m(t) = > Ar cos(wit +6k) = Re > Apei@itts) - (2.1)
k=1 k=1

To randomize Eq. 2.1, the phases 6 are taken to be uniformly distributed, mu-
tually independent of each other and of the amplitudes A;. Furthermore, we assign
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random amplitudes 4; with Rayleigh distributions, and mean-square value
E[A%] = 25, (wi)dw = =07; dw=wp —wpy (2.2)

Finally, for purposes of simulation the lowest frequency interval dw is governed by
the total period T of the simulation:

27

do == (2.3)

Together, Egs. 2.1-2.2 ensure that each of the IV frequency components in Eq. 2.1
is itself Gaussian. We also caution against the common use of choosing deterministic
amplitudes, A,=0}, particularly when interest lies in preserving higher moments of
m(t)—or, similarly, the rms of second-order waves, loads, and responses. Use of
deterministic amplitudes can give unconservative estimates; e.g., second-order rms
values that are on average too small (Ude, 1994).

The resulting second-order wave at this elevation, 7,(t), is calculated from 7, (%)
as
m(t) = m(t) + Amp(?) (24)
in which An,(¢) includes second-order corrections at sums and differences of all wave
frequencies: ‘

N N
A772(t) = qRe Z Z AmAn[H;nei[(“-’m’v“-’n)t‘i'(om‘an)] + H;ne"[(wm‘*’“’n)t'f'(om‘!’an)]] (25)

m=1n=1

In general, the functions H,, and H;} are known as quadratic transfer functions
(QTFs), evaluated at the frequency pair wm, wy. Similar expressions arise in describ-
ing loads and responses of floating structures; in this case H; and H are calculated
numerically from nonlinear diffraction analysis (e.g., WAMIT, 1995). The leading
factor ¢ is included in Eq. 2.5 to alert readers to different QTF definitions in the
literature: various diffraction analyses use g=1 (WAMIT, 1995) or ¢=1/2 (Molin and

" Chen, 1990).

In predicting motions of floating structures, in view of the relevant natural periods
interest commonly lies with either H; (slow-drift) or Hy (springing) but not both. In
contrast, in the nonlinear wave problem both sum and difference frequency effects play
a potentially significant role. Fortunately, unlike QTF values found numerically from
numerical diffraction, closed-form expressions are available for both the sum- and
difference-frequency QTFs for second-order waves (e.g., Langley, 1987; Marthinsen
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and Winterstein, 1992). Including the effect of a finite water depth d, for example,
the sum-frequency QTF can be written as

gkmkn _ 1,2 2 9 wmkn2+wmkn2
H+ —_ WmWn 2g (wm + w" + wmw‘n) + 2 wmwn(wm'*'w&)
mn

gknk 1 '
—-2?'-:&1” + é;(wfn + w2 + Wmwy) . (2.6)

in which the wave numbers k,, are related to the frequencies w,, by the linear dispersion
relation. Note that this QTF definition assumes ¢=1/2 in Eq. 2.5. This is the
convention assumed in WAVEMAKER. The corresponding difference-frequency transfer
function, H, is found by replacing w, by —wy in Eq. 2.6.

2.2.2 Implementation

On input the simulation method requests the desired number of simulated points,
npts, and the total duration T to be simulated. To take advantage of discrete FFT
(Fast Fourier Transform) techniques, it assumes a regular spacing dt=T /npts between
points. Eq. 2.1 is then rewritten as '

npts/2 npts ] .
mt) = 3. Agcos(wit+6;) =Re ) Xpe s (2.7)
k=1 k=1

Here the X are complex Fourier coefficients. The lower half of these directly
reflect both the random amplitude A; and phase 6 at frequency wi=k - dw:

1 .
X = §Ake’9" : k=1..npts/2 (2.8)

The upper half are in turn taken as the complex conjugates (the symbol “*”) of the

lower half:
Xopts—k = Xz ; k= 1l..npts/2 (2.9)

This reflects that unique information is contained only the lower-half frequencies;
indeed, any information in the upper half frequencies (above the Nyquist) is obscured

by aliasing. :

Thus, the first-order wave process is generated by assigning random Ay and O,
defining X; from Eqs. 2.8-2.9, and finally taking the inverse Fourier transform to
recover the discretized time history 7;(t;). To see this, note that since dt-dw=27/npts,
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Eq. 2.7 can be evaluated at {=t; to give
npts B
m(t;) = Re Y Xyemiikinets (2.10)
k=1
This is precisely the definition of the discrete FFT.

As a minor technical issue, note that the conjugate symmetry here ensures that
the “Real Part” operation in Eq. 2.1 is superfluous; i.e., no imaginary component is
generated. Also, to conform with the FFT routine used the array of X values is
shifted by one index: i.e., X; corresponds to the frequency zero (the steady term,
defined as zero), X, to frequency w;=dw, X; to frequency w,=2 - dw, and so forth.

The second-order correction is generated similarly. Starting with Eq. 2.5, substi-
tuting g=1/2, N=npts/2 (Eq. 2.7) and X} from Eq. 2.8:
. ‘ npts/2 npts/2 ) )
Amp(t)=2Re S S XpX Hi,elntont 4 X, XoH eflom=enk (2.11)
m=1 n=1
The leading factor reflects the product of ¢=1/2 and a net factor of 4 (since A, Ay, is
4 |XnXy,]). The program then seeks to rewrite both the sum and difference frequency
contributions in a Fourier sum analogous to Eq. 2.10. For example, the sum-frequency

is assumed of the form
npts

Anf (t;) = Re ) Yye?ridk/nrts (2.12)
k=1

The output Fourier coefficients, Y}, are evaluated by equating Egs. 2.11 and 2.12. This
implies a sum over all wave frequency pairs (wpm, wy) in Eq. 2.11 that give rise to output
sum frequency wg. The difference frequency Fourier coefficients are constructed in a
similar way, and added on the sum frequency Y; coefficients. Once these combined
Y, coefficients are found a (one-dimensional) inverse FF'T is performed to recover the
second-order time history.

2.2.3 Multiple Spatial Locations

The linear dispersion relation can be used to generalize Eq. 2.4, which generates a
first-order wave at reference location z=0, to any other spatial location z in the along-
wave direction. The linear dispersion relation is first used to find the wave number
k, associated with each frequency w, in Eq. 2.4. The modified first-order simulation
then merely replaces w,t + 8, in Eq. 2.4 by wyt — k,x + 6,. Equivalently, the original
phases 6, are first shifted to 6, — knx before applying Eq. 2.8 to define the wave
Fourier amplitude X,. These appropriately modified X, are also used in Eq. 2.11 to
find the corresponding second-order correction at this new location.
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2.3 Input Specification

This section describes the various inputs required by the program and the syntax of
the input to the driver routine for WAVEMAKER. This input is provided in the following

format:

keyword args :
where keyword is a reserved word and args are its arguments. A typlcal input file is

in the following format:

# Typical input file: syntax description

simulate duration npts seed
depth value

psd psdtype psd_parameters
define varlimit value

define gravity value

define omgmax value

write history filenamel filename2
write statistics filename3 filename/
location nloc

valuel

value2

valuenloc

Each of these lines in a typical input file is explained below:

# Typical input file: syntax description
Any line beginning with a “#” is treated as a comment line in the input file and is
ignored by the program. Blank lines are also ignored by the program.

simulate duration npts seed
The keyword simulate indicates to the program that the following three arguments

in sequence are:

e duration: Total desired duration (in seconds) of each of the simulated
wave histories (a real number).
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e npts: Number of points required in each of the simulated wave histories

- (an integer).

e seed: A real number (131071.0 for example) for generation of random
numbers. The seed may be changed by the user in order to generate a
different set of wave histories. The number should be between 1.0 and

231,

The resulting dt (time step) in the simulated histories is duration/npts. The mzgrd
variable in the driver program controls the maximum number of points allowed (Max-
imum npts = 2xmagrd) in a simulation. The released driver program has mzgrd =
4096, so that specified npits can to up to 8192 The user may increase or decrease
mzgrd to suit his/her needs.

‘depth value

This line specifies the water depth at the site of interest. The keyword is depth and
value is a real number indicating the water depth. The units (meters, feet, etc.) of
this value should be consistent with the units of other input parameters.

psd psdtype psd_parameters ,

This line specifies the spectrum type to be used. The keyword is psd followed by
its arguments. psdtype may be one of the following: jonswap, bimodal, or boxcar.
If any other word is specified for psdiype, then it indicates to the program that an
input spectrum is specified in a file whose name is same as the word specified in place
of psdtype. More details regarding this input specification are given in the following

subsection.

define varlimit value [optional command] ‘

If included, this line defines a constant varlimit whose value is a real number (be-
tween 0.0 and 1.0) equal to value. A warning is issued by the simulation routine, if
the estimated second-order power above Nyquist frequency is more than value times
the first-order power. If this line is not provided in the input file, then a default value
of 0.01 is assigned to varlimit.

define gravity value [optional command]
If included, this line specifies the acceleration due to gravity in consistent units.
value, a real number, is assigned to gravity. If not included, a default value of 9.807

meters/sec? is assumed.
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define omgmax value [Optional Command] If included, this line specifies the max-
imum frequency in radians per second which will be included in the second order
transfer function calculation. Specifically, if (W + wy) in equation 2.5 is greater than
omgmaz, then that (m,n) contribution to 7 is not included in the sum in equation

numeq x2.

write history filenamel filename2 [optional command]

If included, this line specifies the files which contain the simulated time histories at
each location. The keyword is write history. The file filenamel contains the un-
derlying first-order (Gaussian) histories, and filename2 contains the corresponding
second-order wave histories. The format of the output is presented in the following
section. If this line is not provided in the input file then default names of gauss.hist
and ngauss.hist are assigned to the output first- and second-order histories, respec-

tively.

write statistics filename3 filename/ [optional command]

This line specifies the files to which the statistics (mean, standard deviation, skew-
ness, kurtosis, minimum, and maximum value) of the simulated histories should be
written. The keyword is write statistics. The statistics for the simulated first-order
histories at each spatial location is written out in filename3 and the statistics for the
total second-order histories are written in filename4. If this line is not provided in
the input file then default names of gauss.stat and ngauss.stat are assigned to the
output files for the first- and second-order history statistics, respectively.

location nloc _
This line specifies the number of spatial locations at which both the first- and total

second-order wave histories should be simulated in time. The keyword is location.
nloc (an integer) specifies the number of locations (maximum location allowed is 50).
valuel, value, ..., valuenloc are the spatial values (real numbers) in consistent units.
The number of values should be equal to nloc. The user is forewarned that the spec-
ification of the spatial locations should be at the end of all other inputs required.

2.3.1 Wave Spectrum Specification

The input wave spectrum can be specified in various ways: spectrum values in an
input file, or spectrum type with related parameters from a default library.
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psd filename
This specifies that the input spectrum be read from an input file named filename. The

format of this file is two free-formatted values per line, specifying a natural frequency
in radians per second and the one-sided PSD (power spectral density) ordinate for
that frequency in consistent units of squared amplitude (feet?, meters?, etc.) per
rad/sec. Lines beginning with a “#” are regarded as comments and ignored. The
input spectrum may be specified on an irregular mesh. This is internally linearly
interpolated to a spectrum on a regular mesh specified by duration and npts. The
spectral ordinates below the minimum frequency and above the maximum frequency
specified in the irregular mesh are assumed to be zero.

Spectral models from the library are called upon using any one of the following
reserved names followed by their parameters (that are real numbers):

psd jonswap H, T, v
psd bimodal H, T,
psd boxcar o, w,e Wi

The keyword jonswap invokes a JONSWAP spectrum parameterized by the sig-
nificant wave height H (defined as four times the standard deviation of the wave
elevation process), spectral peak period T}, (in seconds), and the peakedness factor .

The keyword bimodal invokes a spectral model proposed by Torsethaugen (Bitner-
Gregerson and Haver, 1991). This subdivides the H,-T,, scattergram into three re-
gions, and assigns bimodal spectral shapes in several of these regions. Therefore, the
only input required for this bimodal option is H; and T,,.

Finally, the keyword boxcar invokes a simple band-limited white-noise model of
the first-order wave spectrum. Its parameters are the rms oy, lower cutoff frequency
Wi, and upper cutoff frequency wy; of the first-order wave spectrum. As in other cases
(e.g., the user-defined spectrum at various frequencies), the frequencies wio, and wh;
here are assumed to be in units of rad/sec. Note also that non-zero values of the PSD
at zero frequency are not allowed in either file input or library model selections.

2.4 Output Format

A total of four output files are produced by the driver program. Two output files
contain the time histories: one for the underlying first-order wave histories and the
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other for the total second-order histories. The other two output files contain wave
statistics: first four moments, minimum and maximum. Again, results for the first-

and second-order wave histories are separated into two files.

2.4.1 Time History Output

As noted in the previous section, by default the first- and second-order histories are
written to the files gauss.hist and ngauss.hist. Other choices of output filenames
can be specified by the optional write history command. The format of this output
depends on the number of spatial locations specified. If the number of locations (nloc)
is less than or equal to 8 then the output is in Format1 otherwise the output is in
Format2. Both of these formats write out 3 header lines beginning with a “#” sign.
These are to be treated as comment lines in the output file. In order to explain the
two format styles, say that the spatial locations specified are x1, x2, x3, ..., xnloc.

Format1 outputs data in nloc+1 columns. The length of each column is equal
to the number of points desired in each simulation. The first column contains the
time increments in seconds going from 0 to T with dt = T'/npts. Columns 2 through
nloc+1 contain the simulated history values at the specified locations x1, x2, x3,
...xnloc, respectively. Thus, column 2 contains the wave elevation at location x1,
column 3 contains wave elevation at location x2, and so on.

Format?2 is for handling nloc greater than 8. The output begins with the time
increment Ti in seconds on a line by itself. The time history values for the specified
spatial locations at time Ti are written in the next line onwards, in sets of 10. So if 9
locations were specified (i.e., nloc = 9) then the time increment is printed on a line by
itself followed by a line containing 9 time history values at that time increment. The
next line contains the next time increment followed by another set of 9 values, and
so on. If, on the other hand say 28 locations were specified, then a time increment is
written on a line followed by 28 time history values (corresponding to 28 locations at
that time increment) in the next 3 lines. The first line of the 3 lines contains 10 time
history values for the first 10 locations specified. The next line contains 10 history
values for locations 11 through 20 and the following line which is the third line of the
set will contain only 8 history values for location 21 through 28.
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2.4.2 Wave Statistics Output

The statistics of the simulated histories are also estimated by the driver program.
These statistics include the mean, standard deviation, skewness, kurtosis, minimum,
and maximum. As noted in the previous section, first- and second-order simulation
results are written by default to the files gauss.stat and ngauss.stat, respectively.
The optional command write statistics can alter this choice of output filenames.

The output format in both of these files begins with 2 header lines, each of which
begins with a “#” sign. The output is in seven columns. The first column specifies
the spatial location. The following six columns contain statistics of the wave history
at the spatial location specified in column 1. Columns 2 through 7 contain, the mean,
standard deviation, skewness, kurtosis, minimum, , and maximum value in that order.

The next section presents some sample output files, to illustrate use of the WAVEMAKER
routine.

2.5 Example

In this section, we present a sample problem (copies of input and output files are
enclosed on disk). To illustrate, consider a simulation which samples the wave process
at regular intervals of length dt=0.5 [sec] over a total duration of T'=2048 [sec]; i.e.,
npts=4096 points. We assume here the first-order wave spectrum to be of JONSWAP
form, with H, = 12 [m], T, = 14 [sec] and a peakedness factor v = 3.3. We further
seek to generate wave histories at 2 spatial locations: 0 and 60 [m]. Our input file for
simulating waves using WAVEMAKER should be:
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# Gaussian and Nongaussian Wave Input File

simulate 2048.0 4096 8123872.0
depth 70.0

psd jonswap 12.0 14.0 3.3

write history gauss.hist ngauss.hist
write statistics gauss.stat ngauss.stat
define varlimit 0.01

define gravity 9.807

define omgmax 4.2

location 2

0.0

60.0

Alternatively, if we intend to use the default definitions in the program then our
input file could be (this will produce the same output as the extended version of the

input file):

# Gaussian and Nongaussian Wave Input File
# (Alternative format)

simulate 2048.0 4096 8123872.0
depth 70.0

psd jonswap 12.0 14.0 3.3
define omgmax 4.2

location 2

0.0

60.0

The output files created are: gauss.hist, ngauss.hist, gauss.stat, and ngauss.stat.
The contents of these are listed in the following table:

Output File | Contents

gauss.hist | First-Order Time History
ngauss.hist | Second-Order Time History
gauss.stat | First-Order History Statistics
ngauss.stat | Second-Order History Statistics

Portions of each of these output files are given in the Appendices.
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Figures 2.2 and 2.3 show a comparison of the simulated histories. Figure 2.2 com-
pares the simulated first- and second-order wave time histories at the same location
(the first of the two requested, defined arbitrarily as z=0 [m]). The file ngauss.stat
includes the estimated skewness of the second-order waves. At this location the
second-order wave history has a skewness of about 0.2. This positive skewness (com-
pared to zero skewness of Gaussian waves) indicates the systematic nonlinear effects.
This also gives rise to an asymmetry between peaks and troughs; in particular, the
extreme wave crest in the second-order simulation systematically exceeds the corre-
sponding extreme trough in absolute value. This tendency may be significant for
potential deck impact problems, particularly in older jacket structures with relatively

low deck levels.

Figure 2.3 compares the second-order wave histories predicted by simulation at
the two spatial locations, separated by 60 [m]. The phase lag at these two locations
‘is evident in the plot. It can be seen that a crest height at 0 [m] does not necessarily
imply a crest of the same height at 60 [m]. '
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Figure 2.3: Simulated second-order wave histories at location 0.0 and 60.0




Chapter 3

Identification of First-Order Waves

3.1 Introduction

In ocean engineering practice it is common to assume the waves to be Gaussian
and any nonlinearity in the waves is embedded in the structural response analysis
(e.g., WAMIT, 1995). It has been shown in Winterstein and Jha, 1995 that observed
time histories generally contain nonlinearities, it is thus imperative to remove any
second-order effects in the incident waves so that we do not double-count these effects
in the resulting response estimation. Recent studies (Ude and Winterstein, 1996)
have demonstrated the impact of double-counting such second-order effects on various
structural response characteristics.

The methodology to identify the underlying first-order waves is to seek the implied
first-order wave history which, when run through the second-order wave predictor,
yields an incident wave that agrees with the target observed history at each time
point. This identification is performed using a Newton-Raphson scheme to achieve
simultaneous convergence at each complex Fourier component. If the observed history
has N components, we iteratively solve N simultaneous nonlinear equations to identify
the first-order components.

Due to computer memory limitations, the identification of the first-order history
is performed on short contiguous windows of the observed history. This window size
(mlen) can be made equal to the observed history length in WAVEMAKER if the computer
has sufficient RAM and swap space.

17
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3.2 Methodology

The idea here is to identify the implied first-order history 7, (t) (of an observed history
Tlobs(t)) Which, when run through the second-order predictor, yields an incident wave
that agrees with 7obs(t). In the first-order wave process 71(¢) (see Eq. 2.7), written as
a Fourier sum of N frequencies,

N/2 N ) ’
m(t) = Z Ay, cos(wit + 6;) = Z X etwrt (3.1)
k=1 k=1 :

we need to identify only the lower half X; components, since the upper half values
are complex conjugates of the lower half. Let us denote X = Ui + iV, where Uy, Vi
are the real amd imaginary parts of the complex Fourier component Xj, respectively.

The predictéd second-order wave process (see Eq. 2.11) as evaluated from the
QTFs is

N/2 N/2 ' .
Ama(t) = 2Re 3. 3 X XoHptpelonton)t 4 X, X2 Ho eflem—en) (3.2)

m=1n=1

This may be rewritten in the form of a Fourier sum as
N .
Anp(t) = Z Y, ekt . (3.3)
k=1

where Y; = Y; + Y, are the combined sum and difference frequency components.
Here again, Y, possesses conjugate symmetry so that only the lower half contains
unique information. Y, can be shown to be

v o= Z X XnHo
m+n.k
= 3 [(UnUn = VaVa) +i(VinUn + UnVa)] H}. (3.4)
m+n,.k

where the summation symbol indicates a double summation

N/2 N/2 .
S>> =3 > such that wm +wsp = wg (3.5)
m+n,k m=1n=1 .
and
Yo = Y XaXpHnm.
m—n,k
= Z (UnUp + Vi Vo) + (ViU — UnlV2) Hoor, (3.6)

m—n.k
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where
N/2 NJ2

ST =3 Y suchthat [, — wo| = wy 3.7)

m—n,k m=1n=1

The combined predicted wave process is
Mored(t) = m(t) + Ama(t) (3.8)

The identification scheme strives to simultaneously match 7preq(t) to the observed
wave history 7es(t) at every value of t. Alternatively, we can perform the identi-
fication in the frequency domain and strive to simultaneously match the predicted
Fourier components to the observed Fourier components at all frequencies.

Tlobs (t) can be represented in the frequency domain as

N
ﬂobs(t) = Z Zkewkt (39)
k=1

where Z,’s also possess conjugate symmetry. If the first-order components are iden-
tified exactly, from Eq.s 3.1, 3.3 and 3.9 we will have

Zv=Xe+Y ; forallk=1...N/2 (3.10)

Note that the upper half values can be obtained from conjugate symmetry of the
lower half values. In the Newton-Raphson identification scheme we will try to simul-
taneously minimize X + Y; — Z; for k = 1... N/2 to achieve convergence. Now, this
scheme requires a Jacobian of X; +Y; — Z; w1th respect to the unknowns X;—such a
complex differentiation will lead to numerical discontinuities so we will minimize an

equivalent real function 1/ f2/N instead, where for k =1... N/2

fk = Re(Xk +Y — Zk)
feane = Im(Xp +Y% — Z) (3.11)

The identification of the lower half X; values requires a simultaneous solution of
the nonlinear equations in 3.11 such that f; — 0 for all £ = 1..... N, or alternately

V¥ f2/N — 0. We will formulate the Newton-Raphson scheme in vector form as

ReX ReY ReZ
f_[ImX]+[ImY]_[ImZ} (3.12)
where bold face letters denote vectors, and vectors X,Y,Z contain the complex

Fourier components Xy, Y, Zk, k = 1...N/2, respectively. Here, ['%x&'] is a vector

containing the real part of X in the upper half and the imaginary part of X in the
lower half.
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Let us denote

[ ReX U
s - ][]
_ [ ReY
B = |y (3.13)
[ ReZ
€= | ImZ ]

Note that the vector A, of length N, is constructed such that lower half values
are the real parts of X;; k = 1...N/2 and the upper half is the imaginary part
of Xi; k = 1...N/2. Similarly, B and C, each of length N, contain real and
imaginary parts of the lower half of the second-order correction and the observed
Fourier components, respectively. The elements of A and B are denoted by a; and
by, respectively, where [,k = 1...N. The objective function in vector notation now

1S

f(A)=A+B—C (3.14)
A first-order Taylor approximation of f(A) about a given A is |
f(A)=f(A®)+[J](A-AD) (3.15)

where [J] is a NxN Jacobian matrix denoting the derivatives of the elements f; in
vector f(A) with respect to each of the unknowns ¢; in A where k,/ =1...N. The
Newton-Raphson scheme at iteration p + 1 is then formulated as

APT) = AP 1 h (3.16)

where h, a vector of length N, is found from a Cholesky decomposition followed by
a back-substitution scheme from

[J]h = —f (A®) (3.17)

It can be easily shown from Eq. 3.14 that the entries Ji; of the matrix [J] are

O fr Oby,
=== — .
Jk,i Ba, ~ oK + 0 (3.18)
where Oby/0a; indicates the partial derivative of b; with respect to aj, and
1 ifk=1
Ot = { 0 otherwise (319)

To find by /8ay, recall from notation in 3.13

by =ReY;, and bginse =ImY; for k=1...N/2
a=ImX;=U; and aynp=ImX;=V, for [=1...N/2
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so that from Eq.s 3.4 and 3.6 we have

- A
ORY: S Ul + Unboa) Hin + Y (Unmt + Unno) Hi
6U[ m-+n,k m—n,k
Y,
OReYy _ Y = (Vabmt + Vinbut) Htp + Y (VaOmi + Vinbuit) Hepy (3.20)
61/2 m+n,k m—n,k
OMYe S~ (Vb + Vab) B+ 5 (Vinbt = Vo) i
al][ mink - m—n,.k
IV S bt + Unbut) Hin + S Unbt = Unnnt) Hi
a‘/l m+n,k m-—n,k
Schematically,

(3.21)

where [I] is the identity matrix.

3.2.1 Ramp

In general, the observed input wave time series can start or end from any value. If
the two ends of the wave record or of the window being processed are not continuous
in both offset and slope, the end discontinuity will introduce high frequency ”noise”
in the predicted time series, as is further discussed in chapter 4. The discontinuities,
and so the high frequency ”noise,” can be suppressed by prepending and appending
a ramping sequence to the wave history in each window.

The ramp is linearly raised from or collapsed to the mean of the input using a
modulated sinusoidal function: :

t+ 1ty
la

R(t+1) =1+ [zo cos(wt) + % sin(wt)] (—ts <t<0) (3.22)

in which Z is the mean of the observed input time series and zo = z(0) — Z and
vo = (z(1) — z(0))/dt — zo/ts are the initial value and modified velocity of the zero
mean input z. df is the sampling time interval. The frequency w of the ramp is
estimated as the average frequency of the first and last ten cycles of the input time
series. Once the required output time series has been identified with the augmented
input time series, its initial and final parts corresponding to the ramps are removed.
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3.2.2 Newton-Raphson Scheme

The algorithm for the Newton-Raphson scheme followed in WAVEMAKER is

Estimate C from observed history (Eq.s 3.9, 3.13)
Initial Guess A = C

Estimate B from A (Eq.s 3.4, 3.6, 3.13)

Find f(A) (Eq. 3.14)

Find [J] (Eq.s 3.20, 3.21)

Solve [J]h = —f(A) to find h

Update A=A +h

Check Convergence (see next section):

If converged terminate else go to 3

I R N

3.2.3 Convergence Criteria

The Newton-Raphson iteration scheme is terminated based on the following condi-
tions: '

e Program Converged: If the rms of the increment vector h = \/E{V hi/N
is less than a specified tolerance, the program is said to have converged.
This convergence tolerance is specified as a fraction & (= 0.0001 in WAVEMAKER)
of the standard deviation of the observed wave history oy ebs-

e Program Diverging: If the rms of the identified first-order history oy,
at any iteration p is larger than a specified fraction 8 (=200 in WAVEMAKER)
of oy.0bs then the identification scheme is restarted with a smaller initial
guess which is a truncated and scaled down version of C. The truncation
point is at twice the peak spectral frequency of Tobs(t) and the scaling
factor is factnu” (= 0.9" in WAVEMAKER), where r is the number of restarts
needed so far. Thus the restart guess in complex Fourier notation is

_ | factnu"Zp ; wi < 2wpeak
Xk = { 0 ; otherwise (3.23)

e Maximum Iterations Reached: If the maximum allowed iterations,
specified by the variable mziter (= 10 in WAVEMAKER), is reached and the
program has still not converged, then the program restarts the Newton-
Raphson identification scheme with a smaller initial guess = factnu™C.

e Maximum Restarts Reached: If the maximum allowed restarts, speci-
fied by the variable nuiter (= 5 in WAVEMAKER), is reached then the program
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terminates the identification scheme in the present window and proceeds
to identify in the next observed history window.

3.2.4 Implementation

The first-order components for the observed wave history, of length Nos, are identified
in contiguous windows, each of length N < Ngs. The identification analysis is
performed in this way to minimize the computer memory usage by WAVEMAKER. Recall
that the Jacobian matrix [J] is a NxN matrix and the memory usage is directly
governed by the matrix size of this variable. In principle, if there is sufficient memory
we could set N = N, and identify the first-order component for the entire observed
history in one window, however, this is not usually not the case and we resort to
-identifying in contiguous windows, as shown in Fig. 3.1.

" The first-order component is identified independently in each of the windows in
sequence. The last window is skipped if its contains points less than N.

3.3 Input Specification

The input specification for the identification of first-order wave process is in a command-
‘line format similar to the simulation input. A typical input file for identification is:

# Typical input file: syntax description

identify filename dt winsize nramp
depth value

define varlimit value

define gravity value

define omgmax value

write history filenamel filename2

# Typical input file: syntax description
Any line beginning with a “#” symbol is treated as a comment line and is ignored.
Blank lines in the input file are ignored, as well.

define varlimit value
define gravity value
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15
Window Number:

1 2 3 4 5 6 7 8

(44}
T

Elevation (m)

S ——

0 512 1024 1536 2048 2560 3072 3584 4096
‘ Time Index

Figure 3.1: Identification of first-order wave components is done in contiguous win-
dows of the observed history

The keywords varlimit, gravity and omgmax have the same meaning as in the
simulation section and the user is referred to this section to understand the usage of

these commands.

depth value
The keyword depth as in the simulation section indicates the water depth at which

the identification analysis is to be performed.

identify filename dt winsize nramp _
The keyword identify indicates to the program that the user intends to identify the
underlying first-order wave history for a given observed wave history. This command

requires three arguments which in sequence are:

e filename: The name of the file, a character string, containing the observed
wave time history for which the underlying first-order wave history is to
be identified. The data in the first column in filename is read as the
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observed wave time history. Any blank lines in filename or lines that do
not begin with a number are ignored.

e dt: This value, a real number, indicates the time resolution of the wave
history provided in filename. In other words, dt is the time difference
between two successive elevation values in the observed wave history.

e winsize: An even integer value indicating the window size or the number
of points of the provided wave history to be used in each Newton-Raphson
iteration. The first-order wave components are identified in windows (of
size winsize) in sequence for the provided time history. If the last win-
dow contains number of points less than winsize, then winsize is reset to
the remaining number of points. If the original history contains an odd
number of points then the last point is ignored.

e nramp: An integer value indicating the number of points to be included at
each end of the portion of the wave history in each window. The number
of data points processed in each window will be winsize—2xnramp. If
nramp is not included after the keyword identify or is set to zero, then no
ramps are included. :

The maximum value of winsize is mlen set to 512 points in WAVEMAKER and can
be changed according to the user’s needs or according to the computer’s limitations.
Note that we require mlen < 2xmzgrd in the program. These dimension values are
set in this way so as to minimize the memory requirements of WAVEMAKER.

write history filenamel filename?2

The command write history is used to specify the file names where the identi-
fied histories are to be written. The identified first-order wave history is written in
file filename! and the identified second-order, combined first- and second-order, and
the observed wave histories are written in file filename2. Default values assigned to
~ filenamel and filename?2 are gauss.hist and ngauss.hist, respectively.

3.4 Output Format

The output file names are governed by the command
write history filenamel filename2

with default names being gauss.hist and ngauss.hist for filenamel and filename2,
respectively. '
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filenamel contains the identified first-order wave history in a column of real num-
bers. Each line of this file contains one real number indicating the elevation of the
first-order wave history (see example output files in Appendix B). The time resolu-
tion of this first-order history is dt, equal to the dt provided in the input file using the
command identify. This file also contains comment lines that begin with a “#” sym-
bol as the first character on the line. The first comment line contains information on
the contents of the file, and the following comment lines contain 3 integers: the first is
the window number being identified, the second is the number of iterations required
for convergence, and the third is the number of restarts needed for convergence.

filename2 contains the second-order correction, the combined first- and second-
order waves, and the observed wave time history. The second-order correction is found
from the identified first-order waves, and these two are added together to yield the
combined second-order wave history. These histories are provided in three columns
in filename2, or in other words each line contains three real numbers: the first is the
second-order wave elevation, the second is the combined identified wave elevation,
and the third is the observed wave history (see example output file in Appendix B).
A match of the total identified and the observed wave histories will verify successfuly
identification by WAVEMAKER. The time resolution of each of these histories is dt.
This file also contains comment lines beginning with a “#” symbol that provides
information similar to the comment lines in filenamel.

3.5 Examples

In this section we present two sample problems to illustrate the use of the identifi-
cation capabilities of WAVEMAKER. Example 1 is based on the example presented in
the simulation chapter. Sample input and output files of this identification example
are included in the distribution diskette. Example 2 presented here demonstrates
the identification of first-order components of a measured wave tank history. Note
that sample input or output files of this second example are not included in the

distribution.

3.5.1 Example 1

The example of the simulation capabilities of WAVEMAKER involved simulating a second-

order wave history characterized by a JONSWAP spectrum with H, = 12 [m], T, =
14s and v = 3.3 in 70 [m] water depth. We will use the combined second-order

simulated history and try to identify its first-order wave component.and compare it




3.5. Examples : ‘ 27

to the input first-order component used to simulate the combined wave history. The
input file for the identification run is

# Wave Identification Input File

identify hist.dat 0.5 512

depth 70.0

write history gauss.ide ngauss.ide
define varlimit 0.01

define gravity 9.807

define omgmax 4.2

Alternatively, if we intend to use the default definitions in the program then our

.input file could be (this will produce the same output as the extended version of the

input file):

# Wave Identification Input File
# (Alternative format) '

identify hist.dat 0.5 512

depth 70.0

define omgmax 4.2

write history gauss.ide ngauss.ide

The input file hist.dat contains a column of real numbers (see sample files listed
in the appendix) which will be read in as the observed wave history: The first-
order components will be identified for this observed history and placed in the file
gauss.ide. The corresponding second-order components, the combined identified
history and the observed wave history are written in the file ngauss.ide.

Output File Contents
gauss.ide | Identified First-Order Time History
ngauss.ide | Corresponding Second-Order Time History

Figure 3.2 shows the observed wave spectrum and the identified first-order spec-
trum along with the corresponding second-order wave spectrum. We see that small
second-order contribution to the power spectrum, roughly a decade below the first-
order spectrum even at frequencies twice the peak spectral frequency, suggests the
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difficulty in identifying these components. Figure 3.3 shows the observed wave his-
tory and the identified first-order wave history in cycles around the maximum crest
height. Compare this to the simulation example where we solve the forward problem
of finding the combined (first- plus second-order) history from a given underlying
first-order wave spectrum. The identified first-order component in Fig. 3.3 is almost
the same as the underlying first-order component (denoted Gaussian) in Fig. 2.2 and
these two are shown together in Fig. 3.4. Note how close the two first-order compo-
nents are, and any numerical differences can probably be further reduced by using a
larger window size (greater than 512, for example) in the identification scheme.

3.5.2 Example 2

In this example we will identify the underlying first-order wave component for a
measured wave tank history that reflects a water depth of 175m. For this example
the measured history is located in file wave.dat and has a dt = 0.3354 seconds. We
will use windows of winsize = 512 to identify the first-order components. The input

to WAVEMAKER is:

# Wave Identification Input File
# using default definitions

identify wave.dat 0.3354 512 100
depth 175.0 :
define omgmax 4.2

Figure 3.5 shows a portion where the maximum crest height occurs in the mea-
sured wave tank history. The figure also shows the identified first-order and the
corresponding second-order wave histories. Note how the second-order wave compo-
nent affects the first-order peaks, amplifying the crests and moderating the troughs."
Figure 3.6 shows the wave spectra for the measured history along with the first-order
and the second-order spectra. Again, observe that the second-order energy is signifi-
cantly small compared to the first-order, however, phase locking of the first- and the
second- component (Fig. 3.5) leads to larger crests and flatter troughs.
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Chapter 4

Prediction of Second-Order Random
Waves

4.1 Introduction |

Chapters 2 and 3 of this document outline the Simulate and Identify options of
wavemaker. The Predict option builds on the same theory and implementation to
provide another capability: to propagate an observed input time series through a
second-order model to produce the first- and second-order outputs.

Chapter 2 describes a procedure for simulating a second-order random wave pro-
cess corresponding to a user-specified wave power spectral density. These wave histo-
ries include a second order Stokes correction at the sum and difference of each wave
frequency pair, as calculated in the frequency domain. An inverse FFT is applied to
this frequency domain representation of the wave process to produce a time-history.
Time histories for multiple spatial locations are generated by applying the linear dis-
persion relation in the frequency domain of the underlying first order wave process
prior to inclusion of the second-order correction at each spatial location.

Chapter 3 describes a procedure for identifying an underlying first-order process
from a user specified wave history. This identification, an inverse feature to sim-
ulation, is based on a Newton-Raphson scheme to solve N simultaneous nonlinear
equations to identify the first-order waves which, when run through the second-order
wave predictor, matches the observed waves.

This chapter describes a third execution option for the Wavemaker program. The
predict option uses the underlying first-order wave history generated by the identify

33
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option at one location as input to generate consistent first and second order wave
time histories at other locations using essentially the same theory as the simulate
option. Thus, the Predict option combines the utility of the procedures developed in

Chapters 2 and 3. :

4.2 Qverview

Measured wave input data, such as that collected with a wave probe, is first identified
as described in Chapter 3. The Identified underlying first-order wave process is used
as the input. An FFT procedure generates a discrete Fourier sum representation of
the wave history in the frequency domain. This frequency domain representation of
the wave process is equivalent to that generated in Chapter 2, except that the sum
now corresponds to a user-specified wave time history, rather than a user-specified
power spectral density. Time histories for multiple spatial locations are generated by
use of the dispersion relation with a second order correction as described in Chapter

2.

The following flowchart shows the flow of the calculation for the predict option.
The user specifies an input wave history, which will generally be a measured wave.
Identify, as described in Chapter 3, is used to separate the total process into consistent
first and second order processes. The linear dispersion relation is applied to the
consistent first order part of the wave history, which produces an equivalent first
order history at user specified locations. The predict option then applies the inverse
of the Identify process such that the consistent second order part of the wave history
is recreated at the new locations. It is the use of the same “black box” .in the
separation (identify) and recreation (predict) calculations that ensures the newly
created second order part of the wave histories at the new locations are consistent
with those identified at the original input wave location.

The implementation of the prediction capability differs from simulation only in the
first step. In simulation, complex Fourier amplitudes of the input were generated from
the PSD model. In prediction, they are generated by simply FFT’ing the observed
input time series. Once the input is described by complex Fourier amplitudes, the
procedure is identical to that of simulation.

This tool provides an easy way to compare model test results with real-world
observations or to compare specific model test results such as airgap measurements
at a known location with a model test reference wave history.
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Input Wave History : Output Wave Histories
One Location Muitiple Locations
Identify “Unidentify”
Removes Consistent Adds Consistent
Second Order Process Second Order Process
Input Wave History Linear Dispersion Wave Process
Consistent First- and ] —» Quasi First-Order
Second-Order On First-Order Only

Figure 4.1: Overview of Prediction Calculation Flow

4.3 Methodology

4.3.1 TUnderlying Theory and Assumptions

We first consider 7,(t), the first-order wave elevation, at a specific reference location
(say z=0). For either frequency-domain analysis or time-domain simulation, it is
convenient to write 7;(¢) as a discrete Fourier sum over positive frequencies wy:

N N
m(t) = > (npts/2)Ax cos(wit + ;) = Re > Agell“stti) (4.1)
k=1

k=1

For purposes of prediction, the lowest frequency interval dw is governed by the
total period T of the simulation, while the highest frequency is governed by the time
interval between data points in the input wave history:
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dw == (4.2)

The second-order wave at this elevation, mo(t), is calculated from 7,(t) as

2(t) = m(t) + Ana(t) (4.3)

in which An(t) includes second-order corrections at sums and differences of all
wave frequencies: :

N N
Anp(t) =Re Y D AmAx| Hf;nei[(wm—wn)t+(0m-—0n)] + H;nei[(wm+wn)t+(0m+9n)]] (4.4)
o 1

m=1n=

4.3.2 Implementation

The prediction method requires an input time history representing the water surface
elevation measurements. The measurements are required to be at evenly spaced time
intervals to take advantage of discrete FFT techniques.

An FFT is applied to the time history to calculate consistent values of A and 6
in Eq. 2.1. :

Eq. 2.1 is then rewritten as

npts/2 npts ]
m(t) = Y Apcos(wet+6;) =Re Y X&' (4.5)
k=1 k=1

Here the X are complex Fourier coefficients. The lower half of these directly
reflect values of amplitude A; and phase 6 consistent with the user specified wave
history at frequency wg=~k - dw:

1 .
Xk = §Ake’9’° ) k= 1...Tlpt$/2 (46)

The upper half are the complex conjugates of the lower half due to the double sided
nature of the FFT in equation (etal) (the symbol “*”) of the lower half:

Xopts—k = Xi; k= 1..npts/2 (4.7)
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This reflects that unique information is contained only the lower-half frequencies;
indeed, any information in the upper half frequencies (above the Nyquist) is obscured

by aliasing.

4.4 End-Point Continuity of a Wave Record

4.4.1 Predict Option

Actual measured waves are generally not continuous in slope or offset between the
‘ends of the measured wave record. Subsequently, the identified first order wave process
used as the input to the Predict option is also discontinuous between its ends. This
discontinuity could introduce difficulty in the application of FFT techniques because
of the "wrap-around” effect inherent to the FFT process.

If an end discontinuity is present, the FFT attempts to duplicate the time-domain
discontinuity by introduction of excessively large high frequency components to the
frequency domain characterization of the wave profile. These high frequency compo-
nents are introduced because of the end discontinuity, but are propagated through
the entire wave record. After application of the Inverse FF'T, the resultant time trace
has the spurious high frequency content spread throughout the wave history. There
is no damping in the dispersion relation so any numerical noise introduced by end
discontinuities is not dissipated as it is propagated to other spatial locations as part
of the wave process.

To avoid the introduction of an end point discontinuity, a portion of a wave cycle
is artificially generated by the program in this Predict option. First, the period of a
characteristic wave cycle, T,pqr, is calculated by averaging the wave upcrossing periods
for the first and last ten cycles in the wave record. How large a portion of a single
characteristic wave cycle is required for continuity is determined by estimating the
“phases” of the waves at the beginning and ending of the wave record as ©; and ©:

©, = arctan (ﬂé"-’)

and

O, = - arctan (ﬂ[;“i)
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Figure 4.2: Phase Calculation for Added Portion of Wave Cycle

where
zo = Average offset of the last two points in the wave record from the mean
#; = Slope between the first two point in the wave record
i, = Slope between the last two points in the wave record

The portion of the characteristic wave cycle to be included is then the absolute
value of (©1 — ©;) and so the required additional time is given by:

Tadded = }- [arctan (_151/_(41) — arctan (z2/ w)] (4.8)
w Iy ) :

where w=2m/ Tc},ar

The required number of additional time points is then To4des/ (time between suc-
cessive time points)

A third-order polynomial is then fit through the last two points in the wave record
such that the newly created polynomial would be continuous with the first two points
on the record if the wave record repeated. Thus, a small number of artificial data
points (necessarily less than one wave cycle) is generated which makes the wave record
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continuous between its end-points so no spurious high frequency energy is introduced
into the FFT and IFFT calculations.

Note that when predictions are made for locations other than the location of the
original wave probe, the artificially generated wave data is shifted according to its
Fourier frequency content, as is the rest of the data. Thus, part of the artificially
generated data is shifted a short distance into the body of the actual measured data,
from which it generally can not subsequently be removed.

4.4.2 Simulate Option

End discontinuities are not problematic in the Simulate option because the Simulate
‘option generates waves by use of Fast Fourier Transform techniques. The generated
wave components have the convenient property that the resultant time trace of each
of the component waves is continuous in slope and offset between the two ends of
the generated time series. This property enables the generation consistent simulated
waves at multiple spatial locations without requiring special treatment of end discon-

tinuities.

" 4.4.3 Identify Option

End discontinuities could be problematic in the Identify option. The identification
process is extremely computationally intensive. The input wave time history is sep-
arated into smaller time history segments; each of these windows generally has its
length set to an even power of two to reduce the total computational intensity of
the FFT process. Discontinuities will generally be present between the ends of these

windows.

A different approach is applied to gain end-point continuity in the Identify option
such that the length of each window can be maintained as an even power of two.
The approach is to increase the length of each window by introduction of artificially
generated points on each end of the each wave history segment. The number of
artificial data points plus the number of actual wave data points are selected such
that the total remains an even power of two.

The artificial data is generated such that the wave frequency of the end of the |
actual wave segment is maintained. The amplitude of the artificial waves is gradually
reduced to zero, so the window has the appearance of a segment of actual wave data
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surrounded at each end by a "ramp” of artificial data which reduces each end of the
window to the mean of that window. Continuity between the ends of the window
is assured because each end has waves of zero amplitude. The dispersion relation is
not applied in the Identify option, so dispersion of the ramps into the wave record is
not a concern. The artificial data is removed from the ends of each segment prior to
concatenation of the segments into the identified first and second order wave histories.
The details of the ramp implementation are further discussed in Chapter 3.

4.5 Input Specification

The input specification for the prediction of a first-order wave process isina command-
line format similar to the input for the simulation or identification options.

Typical input file: syntax description

# Wave Prediction Input File

predict filename npts dt

define gravity value

define varlimit value

define omgmaz value

depth value '

write history filenamel filename2
location nloc '
valuel

value2

valuenloc

# Typical input file: syntax description

Any line beginning with a “#” is treated as a comment line in the input file and is
ignored by the program. Blank lines are also ignored by the program. As with other
options of Wavemaker, most lines in the input file can be entered in any sequence.
There are two exceptions: the first non-comment line must indicate the type of analy-
sis to be performed (simulate, identify or predict), and the second is that the location
specification must be the last set of lines in the file.

predict filename npts dt
The required keyword predict indicates the user intends to predict the wave history at
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another spatial location based on a (measured) wave history. This command requires
three sequential arguments:

e filename: A character string indicating the name of the file containing
the observed or identified wave time history for which wave predictions
at other locations are to be performed. The data in the first column in
filename is the wave time history. Any blank lines in filename or lines that
do not begin with a number are ignored. :

e npts: An integer number indicating the number of data lines to be read
from the input wave file. npts times dt equals the elapsed time. If npts
is specified to be a number smaller than the number of lines in the data
file, the first npts data points in the file are used..

e dt: A real number indicating the time resolution of the wave history pro-
vided in filename. dt is the difference between measurement times of two
successive data points in the input wave history.

define
The optional keyword define is to be followed by another keyword indicating which

constant is to be defined.

define varlimit value
define gravity value
define omgmax value

The keywords varlimit, gravity, and omgmax have the same meaning as in the
simulation and identification sections. The value of omgmax is in units of radians per
second and must be specified identically in identify and in predict to obtain consistent

results.

depth value .
The required keyword depth, as in the simulation option, indicates the water depth

at which the identification analysis is to be performed. value is a real number. As
in the simulate and identify options, depth can be specified in any units consistent
with the units of gravity specified using the define keyword. If the user does not
explicitly specify a value for gravity, the default value 9.81 meters/sec? and then the
depth value should be specified in meters.

write history filenamel filename2
write statistics filename$ filename4
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The optional keyword write is to be followed by either the keyword history or
the keyword statistics. write is used to specify the files to which the predicted time
histories or summary statistics are to be written.

write history filenamel! filename2

The final length of each of these files should be the same as the length of the
original input wave history, plus a small amount of descriptive text. Output file
formats are covered in section 4.4 and in more detail in 2.4.1.

filenamel is the file to which the predicted first-order wave histories for each of the
specified locations are written. '

filename2 is the file to which the predicted second-order wave histories for each of the
specified locations are written. :

Default values are assigned to filenamel and filename2 if none are specified by the
user. These default filenames are gauss.his and ngauss.his, respectively.

write statistics filename3 filename}

The final length of each of these files should be the same as the number of ouput
locations specified in nloc below, plus a small amount of descriptive text. Output file
formats are covered in section 4.4 and in more detail in 2.4.1.

filename3 is the file to which summary statistics of the predicted first-order wave
histories for each of the specified locations is written. :

filename/ is the file to which summary statistics of the predicted second-order wave
for each of the specified locations are written.

Default values are assigned to filename$ and filename/ if none are specified by the
user. These default filenames are gauss.sta and ngauss.sta, respectively.

location nloc: :
The required keyword location is used to specify the number of spatial locations at

which both the first- and total second-order wave histories are to be predicted.

nloc is an integer specifying the desired number of locations. The maximum
allowable number of locations is 50.
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valuel
value2

valuenloc

Each of these real numbers indicates one spatial location measured in the along-
wave direction at which prediction results are to be generated. Both negative and
positive values are acceptable. Positive values are down-stream of the original input
wave history; negative values arecloser to the wave generating device. As noted
earlier, this specification of the spatial locations must be after all other input in the
file.

It is suggested that one of the output locations be 0.0, where the waves were
.originally measured. It can then be confirmed that the wave data has been correctly
read and interpreted by the program by verifying that the predicted wave history at
the wave probe equals the target wave history measured at the same location.

4.6 Output Format

A total of four output files are produced by the driver program. Two output files
contain the time histories: one for the underlying first-order wave histories and the
other for the total second-order histories. The other two output files contain wave
statistics: first four moments, minimum and maximum. Again, results for the first-
and second-order wave histories are separated into two files.

4.6.1 Time History Output

As noted previously, by default the first- and second-order histories are written to the
files gauss.his and ngauss.his. Other choices of output filenames can be specified
by the optional write history command. The format of this output depends on the
number of spatial locations specified. If the number of locations (nloc) is less than or
equal to 8 then the output is in Format1 otherwise the output is in Format2. Both
of these formats write out 3 header lines beginning with a “#” sign. These are to be
treated as comment lines in the output file.

Format1 outputs data in nloc+1 columns. The length of each column is equal
to the number of points desired in each prediction. The first column contains the
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time increments in seconds going from 0 to T’ with dt = T'/npts. Columns 2 through
nloc+1 contain the predicted time history values at the specified locations x1, x2, x3,
...xnloc, respectively. Thus, column 2 contains the wave elevation at location x1,
column 3 contains wave elevation at location x2, and so on.

Format2 is for handling nloc greater than 8. The output begins with the time
increment Ti in seconds on a line by itself. The time history values for the specified
spatial locations at time Ti are written in the next line onwards, in sets of 10. Soif 9 -

"locations were specified (i.e., nloc = 9) then the time increment is printed on a line by
itself followed by a line containing 9 time history values at that time increment. The
next line contains the next time increment followed by another set of 9 values, and
so on. If, on the other hand say 28 locations were specified, then a time increment is
written on a line followed by 28 time history values (corresponding to 28 locations at
that time increment) in the next 3 lines. The first line of the 3 lines contains 10 time
history values for the first 10 locations specified. The next line contains 10 history
values for locations 11 through 20 and the following line which is the third line of the
set will contain only 8 history values for location 21 through 28.

4.6.2 Wave Statistics Output

The statistics of the simulated histories are also estimated by the driver program.
These statistics include the mean, standard deviation, skewness, kurtosis, minimum,
and maximum. As noted in the previous section, first- and second-order simulation
results are written by default to the files gauss.sta and ngauss.sta, respectively.
The optional command write statistics can alter this choice of output filenames.

The output format in both of these files begins with 2 header lines, each of which
begins with a “#” sign. The output is in seven columns. The first column specifies
the spatial location. The following six columns contain statistics of the wave history
at the spatial location specified in column 1. Columns 2 through 7 contain, the mean,
standard deviation, skewness, kurtosis, minimum, , and maximum value in that order.

4.7 Examples

In this section we present two sample problems to illustrate the use of the prediction
capabilities of wavemaker. Example 1 is based on the examples presented in the sim-
ulation and identification chapters. Sample input and output files of this prediction
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example are included on the distribution diskette. Example 2 presented here demon-
strates the prediction of first- and second-order components of a measured wave tank
history. Note that sample input or output files of this second example are not included
in the distribution.

4.7.1 Example 1

The example of the simulation and identification capabilities of wavemaker involved
simulating a second- order wave history characterized by a JONSWAP spectrum with
H, =12 [m], T, = 14s and v = 3.3 in a 70 [m] water depth. We will use the first-order
wave history and try to predict the first- and second-order wave history at another
location for comparison with the histories directly simulated at the same alternate

location (60 meters down-stream).

The input file for the prediction run is:

# Wave Prediction Input File

predict gauss.ide 4096 0.5

depth 70.0

write history gauss.pre ngauss.pre
define omgmax 3.0

location 3

0.0

2.0

60.0

The input file gauss.ide contains a column of 4096 real numbers (see sample files
listed in the appendix) having an incremental time step of 0.5 seconds. This file is
read in as the first order components of the identified observed wave history.

The linear (gaussian) prediction are written to the file gauss.his, while the predié-
tion including the non-linear (non-gaussian) terms is written to the file ngauss.his.

Figure 3.2 shows a portion of the observed wave history spectrum and correspond-
ing first- and second-order wave histories. We see that small second-order contribution
pointed out in the identify example contributes meaningfully to the maximum crest
heights. ‘
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Figure 4.3: Non-Linear Prediction and Simulation Results

4.7.2 Example 2

In this example we will continue example 2 from the Identify section by predicting
the wave profile at two locations in addition to the wave measurement location. The
underlying first-order wave component for a measured wave tank history. For this
example the identified history is located in file gauss.ide and has a dt = 0.3354
seconds. We will use windows of winsize = 512 to identify the first-order components.

The input to wavemaker is:
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Figure 4.4: Second-Order Predicted Results - Wave Tank Example

# Wave prediction Input File

predict gauss.ide 4096 0.3354

depth 175.0

define omgmax 4.2

write history gauss2.pre ngauss2.pre
location 3 ’

0.0

2.0

60.0

Figure 4.4 shows a portion of the wave history as predicted at three spacial lo-
cations. Note that the shape of the wave profile has changed only slightly when it
is shifted a short distance (2 meters), but has more significant shape changes at the
larger shift (60 meters).
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Chapter 5

Distribution

The WAVEMAKER routine and example files have been distributed on a DOS formatted
3.5 inch floppy diskette. The diskette contains the source code files (of the form *.£),
example input (*.inp), and output files (*.sta, *.his, and *.ide).

5.1 Copying the Diskette

Copy the contents of the diskette on to your host computer (computer on which you
will run WAVEMAKER). After the copying is done, your host computer should have:

e Example input files identify.inp, predict.inp, simulate.inp and hist.dat.

e Example output files gauss.his, ngauss.his, gauss.sta, ngauss.sta,
gauss.ide, ngauss.ide, ngauss.pre, gauss.pre, identify.out, predict.out,
and simulate.out.

e all the source files *.f and Makefile

Table 5.1 shows the input and output files that are specific to the simulation, identi-
fication and prediction examples.

5.2 Compiling the Source

On a Unix workstation, the Makefile can be used to build the WAVEMAKER executable.
To compile on your host Computer:

49
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Files for Simulation and Identification Examples

Simulation Example

File Type | File Name Description
Input File | simulate.inp | Input to WAVEMAKER
Output Files | gauss.his Simulated first-order wave histo-
ries at each specified location
ngauss.his Simulated combined first- and
second-order wave histories at
each specified location
gauss.sta Statistics of the simulated first-

order histories at each specified lo-
cation

ngauss.sta

Statistics of the simulated com-
bined histories at each specified lo-
cation

Identification Example

File Type | File Name Description
Input Files | identify.inp | Input to WAVEMAKER
hist.dat Observed wave history for which
underlying first-order history is to
be identified
Output Files | gauss.ide Identified first-order wave history
ngauss.ide Identified second-order, combined

L —
w

first- and second-order, and ob-
served wave histories

Prediction Example
File Type | File Name Description
Input Files | predict.inp | Input to WAVEMAKER
Output Files | gauss.pre Predicted first-order wave history

ngauss.pre

Predicted combined first- and:
second-order wave histories at
each specified location




5.3. Executing the Routine 51

e change directory to the subdirectory containing the source code files
e type “make wavmkr” (without the double quotes) at the Unix prompt
and press return

The above will compile all the files listed in Makefile and link them to make the

executable wavmkr. Note that the executable wavmkr is still in the current directory,
and may be moved to the directory which contains the input file, or you can specify
the path to the executable file in order to run it from other directories.

On other operating systems and architectures, follow whatever is the standard
procedure for compiling and linking FORTRAN source code distributed over multiple
files.

WAVEMAKER has been developed on a Sun Sparcstation2, using version 1.4 of the
‘Sun FORTRAN compiler. Every attempt has been made to adhere to the ANSI
FORTRAN 77 standard, ensuring portability of the code.

5.3 Executing the Routine

At the Unix prompt type “wavmkr < simulate.inp” (without the double quotes)
in order to execute Wavemker and perform the simulation example analysis. The
program reads input from the standard logical input unit. The logical units for
standard input, standard output, and standard error are all used in WAVEMAKER. On
the Sun compiler, 0 is used for standard error, 5 is standard input and 6 is standard
output. If the appropriate unit numbers are different, they can be set using the IOER,
IOIN, and IOOU variables in the WAVEMAKER driver program, and the package can be
recompiled.

Run the example problem using the complied code to check if you get the same
output as provided in the example output files. Note that wavmkr will overwrite any
existing file if you specify its name as the target output file using the write command
in the input file.

_ Similarly, at the Unix prompt type “wavmkr < identify.inp” (without the double

quotes) in order to execute WAVEMAKER and perform the identification example anal-
ysis. The resulting output histories can be compared to the corresponding example
output histories to verify successful compilation of WAVEMAKER.

Finally, at the Unix prompt type “wavmkr < predict.inp” ‘(without the double
quotes) in order to execute WAVEMAKER and perform the prediction example analysis.
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The resulting output histories can again be compared to the corresponding example
output histories to verify successful compilation of WAVEMAKER.
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Output File: gauss.his

Appendix A. Output Files for Simulation Example

#

o
P OO WWOWOWNNNOOOON U B D WWNNEROO

[y
-

2047

2046.

2047.

# Time(sec.)

.000000
.500000
.000000
.500000
.000000
.500000
.000000
. 500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000

500000
.000000
500000

|_|III||.| .
""'""’NHHOOOHN(OOOMMHH»HHQ&J-(L

# Underlying First-Order Wave Process
Wave Elevation at Spatial Location

0.00
.189
.754
.239

.436
.681
.623
.595
.862
.282
.802
.230
.263
.448
.403
.553
.121
L773
.216
.588
.433
.543
.310
.343

-3.871
-4.266
-4.040

.906"

60.00
-4.754
-5.466
-5.410
-4.667
-3.660
-2.714
-1.676
-0.875
-0.137

0.582

1.211

1.379

1.263

1.252

1.572

2.166

2.447

3.076

3.472

3.272

2.507

1.492

0.022
-1.441

0.056
-1.729
-3.447

Note that %7 indicates more numbers. Since the files are long, we present truncated versions
of the output files.




Output File: ngauss.his

57

#

# Time(sec.)
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
. 000000
.500000
. 000000
.500000

.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000

T T :
W NN OO WW WO NN O D WWNDNNFE, P, OO

[N
w

2046 .000000
2046.500000
2047.000000
2047.500000

.000000

# Total Second-0Order Wave Process

Wave Elevation at Spatial Location
0.00 60.00

"-3.561 -4.774

-2.670 -4.904
-0.945 -4.906

0.892 -4.458
1.894 -3.636
2.154 -2.719
1.949 -1.632
1.835 -0.810
2.029 -0.150
2.394  0.494
2.982  1.263
3.504  1.740
3.399  1.748
2.247  1.508
1.054  1.561
0.447  2.191
0.119  2.688
-0.431  3.386
-0.983  3.711
-1.462  3.4T1
-2.379  2.563
-3.558- 1.095

-4.273 -0.814
-4.100 -2.098
-3.351 -2.355
-2.713 -2.254
-2.058 -2.384
-0.726 -2.484

-3.361 1.599
-3.657 -0.860
-3.765 -3.229
-3.710 -4.462
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‘Output File: gauss.sta

# Underlying First-Order Wave Process

# Location Mean Sigma Skewness Kurtosis Minimum Maximum
0.00 0.3712E-01 2.923 -.8386E-01 2.955 -9.839 9.852
2.00 0.3715E-01 2.923 -.8062E-01 2.952 -9.755 9.891
60.00 0.3832E-01 2.921 0.1935 2.939 -7.959 10.01

Output File: ngauss.sta

# Total Second-Order Wave Process

# Location Mean Sigma Skewness Kurtosis Minimum Maximum
0.00 0.3687E-01 2.974 0.2470E-01 2.918 -8.962 10.44
2.00 0.3689E-01 2.977 0.2664E-01 2.928 -9.117 - 10.49
60.00 0.3804E-01 2.952 0.3591 3.123 -7.503 11.08
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60 Appendix B. Input/Output Files for Identification Example

Input File: hist.dat

-3.189
-1.754
-0.239
.906
.436
.681
.623
.595
.862
.282
.802
.230
.263
.448
.403 -
.553
-0.121
-0.773
-1.216
-1.588
-2.433
-3.543

O = N W WNNPF R R

-1.292
-1.952
-2.665 -
-3.365
-3.871
-4.266
-4.040

Note that “” indicates more numbers. Since the files are long, we present truncated versions
of the output files.




Output File: gauss.ide

# Indentified First-Order Wave History
-2.5860
-1.2615

.0398

.7557

.0355

.2597

.3753

.5219

.8287

.2055

.7083

.1522

.1924

.3991

.4205

.6076

-0.1573

-0.9790

-1.5084

|
(=]

O = N WWNDNRF R = R=RO

-0.9156
-1.4972
-1.6011
-1.5946
-1.9273
-2.3777
-2.9893
-3.6520
-4,3427
-4.2629
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Output File: ngauss.ide

# Identified 2nd-Order Wave, Identified Total Wave, Input Wave History
-0.6029 -3.1890 -3.1890
-0.4924 -1.7539 -1.7540

-0.1992 -0.2390 -0.2390
0.1502 0.9060 0.9060
0.4005 1.4359 1.4360
0.4212 1.6810 1.6810
0.2477 1.6230 1.6230
0.0731 1.5950 1.5950
0.0333 1.8620 1.8620
0.0765 2.2820 2.2820
0.0937 2.8020 2.8020
0.0778 3.2300 3.2300
0.0706 3.2630 3.2630
0.0489 2.4480 2.4480

-0.0175 1.4030 1.4030

-0.0546 0.5530 0.5530
0.0362 -0.1210 -0.1210
0.2060 -0.7730 -0.7730
0

.2924 -1.2160 -1.2160

-0.1915 -1.1071 -1.1070
0.3880 -1.1092 -1.1090
0.5239 -1.0772 -1.0770
0.3025 -1.2921 -1.2920

-0.0245 -1.9518 -1.9520

-0.2870 -2.6647 -2.6650

-0.3756 -3.3649 -3.3650

-0.2191 -3.8711 -3.8710
0.0766 -4.2661 -4.2660
0.2229 -4.0400 -4.0400
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64 Appendix C. Output Files for Prediction Example

Output File: gauss.pre

# Underlying First-Order Wave Process

# Wave Elevation at Spatial Location

# Time(sec.) 0.00 2.00 60.00
0.000000 -2.586 -2.764 -4.224
0.500000 -1.262 -1.813 -3.682
1.000000 -0.040 -0.522 -3.141
1.500000 0.756 0.631 -2.784
2.000000 1.036 1.271 -2.384
2.500000 1.260 1.380 -1.878
3.000000 1.375 1.431 -1.262
3.500000 1.522 1.660 -0.877
4.000000 1.829 1.782 -0.709
4.500000 2.205 2.023 -0.575
5.000000 2.708 2.499 -0.244
5.500000 3.152  2.819  0.405
6.000000 3.192 3.067 0.899
6.500000 2.399 2.804 1.887
7.000000 1.421 1.963 2.813
7.500000 0.608 0.738 3.390
8 -0 -0 3

.000000 .167 .130 .582

2043.000000 -0.916 -0.800 5.185
2043.500000 -1.497 -1.539 5.590
2044.000000 -1.601 -1.830 5.317
2044.500000 -1.595 -1.879 4.422
2045.000000 -1.927 -1.921 3.287
2045.500000 -2.378 -2.146 2.461
2046.000000 -2.989 -2.848 1.366
2046.500000 -3.652 -3.387 -0.389
2047.000000 -4.343 -4.012 -2.238
2047.500000 ~-4.263 -4.401 -3.703




Output File: ngauss.pre

65

#

O N~NODONONEDWWNONNKRRFEROO

2043.
2043.
2044.
2044.
2045.
2045.
2046.
2046.
2047.
2047.

# Time(sec.)
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000

000000
500000
000000
500000
000000
500000
000000
500000
000000
500000

0.00
-3.205
-2.255
-0.736
77
.522
.667
.498
.550
.914
.278
.713
.195
.338
.522
.401
.544
.073

O O H N WWNNF = = = O

-1.124
-1.049
-0.994
-1.239
-1.922
-2.607
-3.261
-3.781
~-4.255
~-4.025

-2.

[}
= N

QO R NWNNNERRFERHRO

# Total Second-Order Process
Wave Elevation at

2.00
977
.572
.479
.088
.442
.953
.863
.652
.738
.054
.616
.978
.253
.923
.882
.539
.151

.700
.599
.140
.159
.718
.372
.101
.454
.946

.288

Spatial Location
60.00
-3.840
-3.420
-2.968
-2.594
-2.279
-2.001
-1.437
~-0.786
-0.370
~-0.316
-0.246
0.220
0.576
1.419
2.427
3.426
3.9711

5.807
5.835
4.913
3.998
3.418
2.621
0.510
-2.323
-4.103
=4.506




Form A ved
REPORT DOCUMENTATION PAGE oMB N 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,

1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,

Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT DATE 3. DATES COVERED (From - To)
4. TITLOE?\I‘;DOS&BTTI'/TZJ Z JM - /77 g 5a. CbNTRACT NUMBER

Sccavd— Oedern  Ramdom Ocean Waves :

PREDICLTION oF TEMPRAL prd < PATIAL Sb- GRANT NUMBER

VARATIaN.  Tye Rourve L/avemaxen Novo)y-56=/-0 L%/

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Beer SWEETMIAN
Alok K JIJ/) . 5e. TASK NUMBER
STeven R, Lt/IUVE/Z_STE/ ) 5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
RS 4 Roup REPORT NUMBER
sk, L;/lN"fiﬂin'A{ C. A CornveELL ) '
Blywe CENTER Rus -33
STawrord Universizy. CA 94209
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

OFFICE OF NAVAL RESEArcH

20 W
%ﬂ N ?} wuey S7. 11. SPONSORING/MONITORING
LiNGToA, V4 222/7- Y4 20 AGENCY REPORT NUMBER

A778 « Rostddy  LBAR Soury

12. DISTRIBUTION AVAILABILITY STATEMENT

APPKon/ED For PUuBLIC /75LE455

13. SUPPLEMENTARY NOTES

W RBSTACT They Tepor)  desendes oad  Hesronies the tse and condorlyre
theery ol the roubue WHEWKER | The roumie s wed 5 s
Fhadom  Non- Gavssipn  fime- /1-3"'4"-'6’5/ ta :‘a/tvn‘-‘ﬁy WA el Setand- o rdpr

bfu&fmeﬂfj o Sec -}feu' -Za/ waves ‘.4,0/ 4o /o(*f,,/,),;l Wihie Fwme A,},;d,\,z_! at
bred wsere speciled  lorasions bugd /. ‘

\}e - f ! otaYio j A on fhe d"\?’:‘*‘/‘/}/ S/Q,\ 'Za/ of J:Ml&/ﬂ)‘tj/
frwe- /"‘\3*""}’~ Octan wavt +wme- histirids 4 siruluted wsiy 4 it order  ware.

foreds an zA-htry IWEI™  splLFrum  an thea Iy AV reet
P Spioad . ordor h;/JrleyMMv‘L fﬂe‘,.—y, kf/’)’ly an-/ (o rrechions szZ

15. SUBJECT TERMS

16. SECURITY CLASS!FICATION OF: 17. LIMITATION OF 18. NUMBER [19a. NAME OF RESPONSIBLE PERSON

ABSTRACT OF PAGES
a. REPORT b. ABSTRACT |c. THIS PAGE S .

19b. TELEPONE NUMBER (Include area code) .

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI-Std 239-18




